

Proiectarea si realizarea unui detector RPC pentru rate mari de numarare, cu structura diferentiala multistrip

PROIECT FIZICA HADRONICA2 Program CAPACITATI – Modulul III/PC7

CBM needs on the experiment

- Interaction rate 10⁷Hz (~1000 tracks /event)
- TOF wall at 10m from target from 3° to 27°
- Rate from 1kHz/cm² (27^e) to 20kHz/cm² (3^e)
 - Hit density from 6.10⁻²/dm² to 1/dm², more than 60000 cells to have occupancy below 5%
 - Total area >60m²

RPC Counting Rate Performance

- "Classical MSMGRPC" keeps the performances up to ~1 kHz/cm² (ρ_{glass} ~ 10¹² Ω cm); this type of RPC could be a solution for a major part of the TOF – CBM subdetector.
- ToF CBM subdetector at small polar angles high counting rate environment (up to 20 kHz/cm²).
- Solutions:
 - Electrodes with lower resistivity
 - Smaller and many gaps
- Our prototype was built using Pestov glass with ρ ~10¹⁰ Ωcm, 2 mm glass thickness and 300 μm gas gap

HCRRPC – differential architecture

- low cross-talk
- minimization of induced noise
- higher signal than single-ended architecture @ the same HV

Symmetrical structure, differential readout

Active area 40.6 x 300 mm2

Electrodes: Pestov glass: 2.0 mm

2 x 2 gas gaps; 300 µm thickness each gap

Readout electrodes: 1 double sided anode and 2 single sided cathodes

made from pcb with copper strips: 14 strips each side:

2.54 mm pitch = 1.1 mm strip width + 1.44 mm gap width

The readout and HV electrodes

Construction Details

Mounting plate

define the mechanical alignment of the RPC structure

Al Box

Al Box Flanges

Mariana Petris, Decembrie 2009

Construction Details

-Glass Electrodes:Pestov 2 mm x 40.6 mm x 300 r -Gap: 300 miu fishing line -Pitch: 2.54 mm => 1.1 cooper line, 1.44 gap

RPC

5.0ns/div 10.0GS/s IT 10.0ps AC1 2 -1.0mV

Size

No.

<10Hz

TDC

FEE NINO chips

LVDS NIM converter \Rightarrow

⁶⁰Co source test – time resolution differential architecture

Applied High Voltage = 6400 V

⁶⁰Co source test – time resolution differential architecture

Applied High Voltage = 6400 V

Conclusions

• A multi gap, multi strip, symmetric RPC prototypes with low resistivity electrodes and a differential readout has been designed and built; it is a new contribution of our group in the field of high time resolution time of flight detectors for high counting rate environments.

• Results have been presented at:

1. M.Petris et al., "Status of differential strip RPCs", 13th CBM Collaboration Meeting, March 09-13, 2009, GSI Darmstadt, Germany.

2. M. Petris et al. "Status of Multigap, Symmetric, Strip readout, Differential architecture RPC prototypes", CBM-Hadron Meeting, July 13, 2009, GSI Darmstadt.

3. M. Petris et al. "Toward a high granularity, high counting rate differential read-out RPC", 14th CBM Collaboration Meeting, October 6 – 9, Split, Croatia